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Abstract. Ab initio calculations are reported for the quantum scattering of electrons from CS2 molecules
in the gas phase and for energies which range from near threshold up to about 100 eV. Angular distribu-
tions are examined in detail and an extensive comparison is made with existing experiments and earlier
calculations. The agreement found with the latter data is fairly good and results are further discussed in
terms of a physical mechanism of “exchange level shifting” to explain the disappearance of a Πu resonance
suggested by earlier studies.

PACS. 34.80.Bm Elastic scattering of electrons by atoms and molecules – 34.80.-i Electron scattering

1 Introduction

The scattering and metastable attachment of low-energy
electrons to atomic and molecular targets provide a great
variety of interesting phenomena related to fundamen-
tal aspects of quantum collisions such as Feshbach res-
onances [1], virtual state formation [2] or strong energy
dependence of the energy transfer efficiency in molecular
gases [3].

Among the various systems which have been experi-
mentally analysed to observe the possible presence of any
of the above features, together with the comparison with
different properties of the elastic cross sections, integral
and differential, the carbon disulfide (CS2) molecular gas
has been among the most studied. Together with other
linear species with have the same valence electron struc-
tures (CO2 and OCS), it has important applications in
laser production studies and in atmospheric chemical pro-
cesses.

The earliest calculations simply used a model po-
tential [4] within the continuum, multiple scattering ap-
proach and examined elastic integral cross sections from
0 to 100 eV: they reported the presence of a shape res-
onance of Πu symmetry at 1.85 eV, plus further reso-
nances of different symmetries at higher energies. Addi-
tional calculations [5] used the independent atom model
to evaluate cross sections for energies above 100 eV,
while Lee et al. [6] calculated elastic differential, integral
and (elastic+inelastic) cross sections by employing the
Schwinger iterative method combined with the distorted
wave approximation. Their results showed the presence of

a e-mail: fa.gianturco@caspur.it

a Ramsauer-Townsend (RT) minimum around 0.2 eV but
found no indication for the low energy Πu shape resonance
reported earlier [4].

Further calculations [7] of the elastic, integral and dif-
ferential cross sections were carried out for energies be-
tween 5 eV and 50 eV using the Schwinger multichannel
method with pseudopotential models within the Static-
Exchange (SE) approximation. By using the same method
as above, later studies [8] showed that the Πu resonance
present at the SE level of approximation becomes a bound
state when polarization effects are included in the scatter-
ing calculations.

The corresponding experimental studies have reported,
over the years, total, elastic and also vibrationally in-
elastic cross sections which exhibited a minimum around
0.8 eV [9], while Sohn et al. [10] reported differential
and vibrationally inelastic cross sections where they found
a minimum around 0.8 eV in the elastic channel: both
the above experiments saw no indication of the Πu res-
onance surmised by the earlier calculations [4]. More re-
cent measurements [11] analysed collision cross sections
below 0.2 eV of energy and detected the presence of gi-
ant resonances superimposed on a sharp rise of the cross
section that was attributed to the presence of a virtual
state for the CS−

2 system. The most recent calculations to
date [12] reported a study using the Schwinger multichan-
nel method implemented with pseudopotentials and added
polarisation effects to the SE calculations done earlier.
Their computed cross sections showed a sharp increase
near zero energy followed by an RT minimum around
0.7 eV: they also did not find the presence of the Πu res-
onance of earlier studies [4].
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In the present analysis we have therefore decided to
revisit the calculations on electron scattering off CS2

molecules in the gas phase in order to assess once more,
using an essentially exact, all-electron SE calculation plus
the model treatment of correlation effects via a Density
Functional (DFT) formulation of the short-range part of
a correlation-polarisation, Vcp, interaction potential. The
aim was to see in more detail the role of exact exchange
forces in either producing or removing the dubious Πu

resonance, to further assess the presence of an RT mini-
mum and of a virtual state and to make a more extensive
comparison between measured and computed differential
cross sections (DCS).

The following Section 2 briefly outlines our theoret-
ical approach while Section 3 reports the integral cross
sections and the resonance behavior. Section 4 shows the
comparison of the present DCS values with experiments
and earlier calculations, while Section 5 summarizes our
conclusions.

2 The theoretical treatment

Within a single-center expansion (SCE) of the contin-
uum wavefunction and of the interaction potential, the use
of the Exact-Static-Exchange (ESE) approximation gives
rise to a set of coupled integro-differential equations [13]
{
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which integrates over real spherical harmonics to yield the
radial part of each new function: here the ϕα are the or-
bitals we shall discuss below. Furthermore
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with the parity index p = 0 or 1. Here the same equa-
tion (3) also holds for the r variable in (1).

One can now express the solution as a linear combina-
tion of homogeneous and inhomogeneous terms:
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The final numerical integration of the ensuing Volterra
equations was then carried out exactly as already de-
scribed in our previous work [13,14]. If one adopts a one-
electron picture for the description of the elastic scattering
process in the fixed-nuclei limit, one finds that the collision
is determined by an effective Hamiltonian

Heff = T + U (11)

where T denotes the kinetic energy of the scattered elec-
tron and U denotes some optical potential. The latter can
be obtained in a variety of ways and its function has of-
ten been discussed in the literature [15]. Within the exact
static exchange+polarization (ESEP) approximation, the
simplest useful approximation to U , one splits it in a local
and non-local term, the former being real, energy inde-
pendent and long ranged while the latter is short ranged
and energy-dependent,

U(r, r′, E) = V (r)δ(r − r′) + W (r, r′, E). (12)

All the nuclear coordinates are not explicitly indicated
and are supposed to be fixed at their equilibrium values
(the FN approximation).

In the present case, the distances adopted were ini-
tially those of the molecular equilibrium geometry: RCS =
2.9376a0 and the basis set expansion chosen for the tar-
get Molecular Orbitals (MO’s) was the Valence Double
Zeta D95V∗ [16]. Whenever the scattering process could
take place with an ‘undistorted’ molecular charge distri-
bution and the polarization-correlation effects could be
disregarded, then the local potential V becomes the static
interaction:

V (re) = 2
∑

j

∫
dr

|ϕj(r)|2
r − re

−
∑

k

Zk

|r − Rk| (13)

and W becomes the exchange interaction without any de-
pendence on the projectile relative energy

W (r, re, E) = −
∑

j

ϕj(r)ϕj(re)
|r − re| . (14)

re is now the coordinate of the scattered electron and
r represents the coordinate of a bound electron. In the
above equations {φj} denotes the set of doubly occupied
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self-consistent-field (SCF) orbitals, while {Rk} and {Zk}
denote the sets of nuclear positions and charges, respec-
tively.

The first step is therefore that of solving the scattering
problem for the local and long range potential V . This will
be done, as mentioned below, by solving coupled integral
equations by a finite-step method. The residual scatter-
ing due to the non-local interaction could be done within
the T -matrix expansion approach since, due to the short-
range character of the exchange potential, W can be quite
well represented via the use of a separable approxima-
tion [17,18]. Thus we start by approximating the exchange
potential W by the truncated separable form:

W (r, re) ≈
N∑

α,β

χα(r)Wα,βχβ(re) (15)

where the {χ} are now additional, new Cartesian Gaussian
functions not necessarily orthogonal to each other, nor to
the occupied molecular orbitals to the target SCF basis
set mentioned before. We shall describe them in the next
section.

The exchange matrix elements for the bound orbitals
of the molecule are given by first calculating the following
matrix elements

K̃γτ =
∫

dr
∫

dreϕγ(r)W (r, re)ϕτ (re) (16)

hence

K̃γτ =
∑
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∫
drϕγ(r)χα(r)Wα,β

∫
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(17)
and

K̃γτ =
∑
α,β

SγαWα,βSβτ (18)

we are finally looking for the exchange matrix W as
given by

W = S−1K̃S
−1

(19)

with Sαβ being the overlap matrix elements.
We obtain a quadrupole moment Q = 2.325 au in good

agreement with the experimental value. The analytical co-
efficients for the expansion of each occupied molecular or-
bital φi were given, in symmetrized, real spherical har-
monics, with l values up to 200, as

φm
i (r) =

∑
l

Cm
l (r)Sm,p

l (θ, φ). (20)

The above expansion was then used to generate the
electrostatic potential:

V (r) =
∫

dr′
∑

i

φm
i (r)φm∗

i (r′)
|r − r′| (21)

and the potential was finally expanded in Legendre poly-
nomials up to l = 80 for the maximum multipolar coeffi-
cient.

Table 1. Separable exchange GTO’s employed in the calcula-
tions.

Σg symmetry
(a) on the C atom

s: 20.0; 9.0; 5.0; 3.0; 1.7; 1.0; 0.6; 0.35; 0.2, 0.1
dzz: 8.0; 4.0; 2.0; 1.0; 0.5; 0.25; 0.1

(b) on the S atom
s: 8.0; 4.0; 2.0; 1.0; 0.5; 0.25, 0.1
pz: 8.0; 4.0; 2.0; 1.0; 0.5; 0.25; 0.1
dzz: 8.0, 4.0; 2.0; 1.0; 0.5; 0.25; 0.1

Σu symmetry
(a) on the C atom

s: 20.0; 9.0; 5.0; 3.0; 1.7; 1.0; 0.5; 0.25; 0.12; 0.08
dzz: 16.0; 8.0; 4.0; 2.0; 1.0; 0.5; 0.25; 0.12; 0.08

(b) on the S atom
pz: 16.0; 8.0; 4.0; 2.0; 1.0; 0.5; 0.25; 0.12; 0.8
dzz: 16.0; 8.0; 4.0; 2.0; 1.0; 0.5; 0.25; 0.12; 0.08

Πg symmetry
(a) on the C atom

dxz: 20.0; 9.0; 5.0; 3.0; 1.7; 1.0; 0.6; 0.35; 0.2; 0.12
(b) on the S atom

px: 64.0; 32.0; 16.0; 8.0; 4.0; 2.0; 1.0; 0.5; 0.25; 0.1
dxz: 16.0; 8.0; 4.0; 2.0; 1.0; 0.5; 0.25; 0.1

Πu Symmetry
(a) on C atom

px:20.0; 9.0; 5.0 3.0; 1.7; 1.0; 0.6; 0.35; 0.2; 0.12
(b) on the S atom

px: 64.0; 32.0; 16.0; 8.0; 4.0; 2.0; 1.0; 0.5; 0.25; 0.1
dxz: 16.0; 8.0; 4.0; 2.0; 1.0; 0.5; 0.25; 0.1

∆g symmetry
(a) on the C atom

dxx:20.0; 9.0; 5.0; 3.0; 1.7; 1.0; 0.6; 0.35; 0.2; 0.12
(b) on the S atom

dxx: 16.0; 8.0; 4.0; 2.0; 1.0; 0.5; 0.25; 0.1
fx2z: 16.0; 8.0; 4.0; 2.0; 1.0; 0.5; 0.25; 0.1

∆u symmetry
(a) on the C atom

fx2z: 20.0; 9.0; 5.0; 3.0; 1.7; 1.0; 0.6; 0.35; 0.2, 0.12
(b) on the S atom

dxx: 16.0; 8.0, 4.0; 2.0; 1.0; 0.5; 0.25; 0.1
fx2z: 16.0; 8.0, 4.0; 2.0; 1.0; 0.5; 0.25; 0.1

2.1 The polarization potential

As mentioned in the introduction we used in the inner re-
gion the density functional form as given by Padial and
Norcross [19]. The asymptotic part of this potential was
calculated using the experimental values of the polariza-
tion: α0 = 55.4a3

0; α2 = 39.14a3
0.

2.2 The exchange potential

The Gaussian basis set |γα〉 that we used to expand the
exchange kernel for the 19 occupied MO’s is given for each
symmetry in Table 1 where the meaning of the symbols is
explained there.

The expansion of the orthogonalized basis set in spher-
ical harmonics was carried out analytically by using the
shifting of Gaussian functions and we took for each type
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Fig. 1. Computed partial integral elastic (rotationally
summed) cross sections, as a function of collision energy, for all
contributing symmetry components. Solid line: present results;
dashed lines: calculations from reference [12]. Short dashes: our
calculations with only valence orbitals included in the exchange
(Πu component).

of basis functions the first two contributions to this ex-
pansion. The l values went up to lmax = 28 for Σ orbitals,
up to 15 for Π orbitals and ∆ orbitals. The steps of the
grid for the radial coordinate were taken to be 0.005a0 up
to R = 10a0. For larger values of R, and up to distances
of 500a0, we employed the asymptotic part of the static
potential plus the polarisation potential indicate above.

The partial waves employed in the scattering calcu-
lations went up to lmax = 60 for the scattered electron
when the index of the multipolar coefficients went up to
100. For multipolar terms in the potential beyond l = 80
we only employed the asymptotic part of the static inter-
action of equation (21). Convergence was checked against
all the above parameters and the size of the basis set ex-
pansion: all reported quantities are converged within the
third significant figure.

3 Results and discussion

3.1 Integral cross sections

In order to assess the quality of the present calculations,
we report in Figure 1 the behavior of the individual partial
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Fig. 2. Computed integral partial cross sections of Πu sym-
metry as a function of the number of bound orbitals included
in the description of the exchange potential. The curve marked
by crosses corresponds to that given by a solid line in Figure 1.

cross sections contributing for each symmetry component
as a function of collision energy, from threshold and up to
10 eV.

The results are shown for the six different symmetries
which contribute to the total cross sections over that range
of energy. The dashes report the same calculations from
the recent work on Bettega et al. [12]. The following com-
ments could be made:

1. in spite of the differences in methodology and on the
numerical treatment of the interaction forces, it is re-
assuring to see that our present results follow fairly
closely the recent data of reference [12];

2. the Πu resonance surmised by earlier studies [4] is
not present in our results (solid line) nor in the re-
cent calculations (dashes). We see, however, that if
we artificially eliminate the correlation-polarization
contribution to the scattering process (short dashes)
by weakening the attractive interaction, this causes one
of the bound states in the Πu symmetry to become a
resonant state: the latter, however, disappears when
the correct (stronger) interaction forces are employed.
The effect on the scattering when the exchange con-
tributions are gradually included could be better anal-
ysed by looking at the results of our numerical exper-
iment reported by Figure 2. The calculations shown
there indicate the changes in the Πu component of the
cross sections as the number of bound orbitals con-
tributing to the exchange kernel is varied: one clearly
sees there that only the inclusion of all the target MO’s
(curve with crosses) in describing the full exchange is
able to bring the scattering electron down to occupy-
ing a bound state of the target, thereby eliminating the
spurious resonant features shown when an artificially
weaker interaction is employed in the calculations. In
other words, even if the correlation-polarization terms
are included in the full interaction, the behavior of
the Πu component still shows the presence of a reso-
nant state whenever the exchange contribution is made
weaker than its correct value. Thus, the full inclusion
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of exchange effects (which were only qualitatively mod-
eled in the calculations of [4]) is an essential ingredi-
ent for transforming a spurious resonance in a many-
electron system into an additional bound state, this
being the case even if the Vcp interaction is included.

All sets of calculations given by Figure 3 indicate regions
where partial maxima should appear in the total cross sec-
tions and also show the presence of a Ramsauer-Townsend
(RT) minimum below 1 eV of collision energy, as also indi-
cated by the Σg and Σu contributions shown in Figure 1.
The comparison with the available data for the total elas-
tic cross sections is also given in Figure 3, where the fol-
lowing considerations could be made from analysing such
data:

1. our computations follow rather closely the experiment
of Sohn et al. [10] and indicate the same presence of a
couple of resonant features from 6 to 10 eV, albeit less
broadened than in the experiments;

2. our RT feature is also clearly present and seems to
appear slightly below the 0.8 eV location of the ex-
periments: we see it around 0.6 eV. Only one of the
earlier calculations, the dot-dashes from reference [12]
confirm the minimum feature and gives it closer to the
experimental findings;

3. the overall size of the computed cross sections follows
rather nicely the experimental energy dependence and
is also in line with the earlier computations reported
in the figure.

3.2 Angular distributions

Another important test when assessing the the quality of
calculations is that provided by a comparison of the com-
puted differential cross sections (DCSs) with either earlier
computations or existing experiments. In the following fig-
ures (Figs. 4–7 we report such a comparison for the results
concerning our title system.

Fig. 4. Computed and measured angular distributions in
the low energy domain: the experiments are: (+) from ref-
erence [10] and (�) from reference [20]. Our calculations are
given by a solid line, while the dashes refer to the calculations
of reference [6] and the dots to calculations from reference [12].

The lower energy behavior of the angular distribution
is shown by Figure 4, where both experiments and calcu-
lations are given in absolute units and are seen to be very
close to each other in terms of relative sizes. Furthermore,
we see that our present data are essentially coincident with
the earlier calculations of [6,12] and also give rather well
the general shape of the measured quantities.

When we look at the next energy range from 3.0 to
5.0 eV, we see that the present results are doing well in
reproducing the experimental data: a more marked for-
ward scattering feature in the measurements is also clearly
given by our calculations. Furthermore, the existing earlier
computations, in spite of coming from an entirely differ-
ent treatment of the scattering process, are seen to be very
close to the present results.

If we now move to a still higher energy domain which
goes from 8.0 eV up to 20.0 eV (see results of Fig. 6), we
see again a very nice agreement between calculations and
experiments: our results indicate an increase in size of the
cross sections as the scattering moves to the backward re-
gion, although the experiments have no data beyond 130◦
to confirm this behavior. The earlier calculations, when-
ever available are also very close to the present ones.

The highest energies available experimentally are stud-
ied in the three panels of Figure 7, where we also compare
our calculations with experiments and with other, earlier
computations [6].

Considering the complexity of the calculations, we
see that the existing experiments are once more well
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Fig. 5. Same quantities as in Figure 4 but for an higher energy
range from 3.0 to 5.0 eV. See text for details.

Fig. 6. Same quantities as in Figure 4 but for the higher energy
domain from 8.0 to 20.0 eV. See main text for details.

reproduced by the present data which, at 100 eV, are also
fairly close to the only existing earlier calculations [6].

Another useful piece of information is reported by the
results of Figure 8, where we compare the integral cross
sections of Figure 3 with the momentum transfer cross
sections (MTCS) as obtained from the previous angular

Fig. 7. Same quantities as in Figure 4 but for the highest
energies considered in this work. See there for details on the
symbols used.

Fig. 8. Computed integral cross sections (ICS) and momentum
transfer sections (MTCS) from threshold up to 100 eV.

distributions by the following integration

σMT (k2) = 2π

∫
dσ

dΩ
(k2)(1 − cosϑ)dϑ. (22)

The comparison with the ICS given in the figure clearly
indicates the strong backward scattering effects which ap-
pear as the collision energy decreases and which cause a
strong surge of the MTCS below 0.5 eV. Furthermore, we
see the broad region of large values of the MTCS between 1
and 10 eV, associated again with strong backward scat-
tering in that energy range as visible from the computed



F.A. Gianturco and T. Stoecklin: Low-energy from gaseous CS2 91

DCS discussed before. On the other hand, as the collision
energy increases towards 100 eV, the angular distributions
favor the forward scattering region, as shown by our data
in Figures 5 to 7. Hence, the corresponding MTCS val-
ues decrease monotonically and follow the ICS size and
behavior in that region.

It is also interesting to note that an earlier study on
e−-CS2 scattering [21] showed from calculations that the
lowest energy geometry for CS2 was a bent structure and
that a linear transition state exists very close in energy and
with a geometry very close to that of neutral CS2. Fur-
ther experimental studies on CS2 resonant behavior [22]
suggested the formation of CS−

2 around 15 meV and a gi-
ant resonance associated with a bent CS−

2 around 49 and
82 meV attributed to virtual state formation.

Our present calculations indicate indeed the presence
of a negative scattering length (A0 = −3.70a0) for the
equilibrium geometry and a corresponding energy location
of a virtual state around 0.9 eV, not far from the RT
feature shown by Figures 1, 2 and 3 and from the virtual
state formation invoked for the intermediate structure of
the metastable anion by [21,22].

Furthermore, we have found in our calculations of the
scattering length as a function of bond length that its val-
ues become markedly larger (i.e. the virtual state energy
location moves closer to a zero-energy resonance position)
as the bond is symmetrically stretched: for Rcs = 2.35 Å
we get, in fact, an A0 value of –6.74a0, and for Rcs fur-
ther stretched to 3.23 Å we obtain: A0 = −12.49a0. Thus,
we can surmise that geometry deformations (symmetric
stretching in our numerical experiment) can lead to a vir-
tual state evolution into a zero-energy resonance which
could then be responsible for the giant features observed
by the experiments of [22].

4 Present conclusions

The calculations described in this work have analyzed the
nanoscopic origin of the spurious Πu resonance reported
earlier for CS2 and have shown that, in a multi-electron
target like this molecule, the correct treatment of exchange
forces is an important ingredient for realistically describ-
ing the attractive features of the overall interaction: by
reducing the number of bound electrons involved in the
exchange with the scattering electron, in fact, we have
shown that a spurious resonant state fails to become a
bound state of the anionic system and therefore artifi-
cially modifies the energy behavior of the Πu component
of the total ICS.

By further using the full exchange contribution we
have computed the low energy RT feature and found it to
occur around 0.6 eV, in fair agreement with experiments.
The angular distributions have also been computed over
a very broad range of collision energies and turned out to
agree reasonably well with the existing experiments and
with earlier calculations.

Finally, the use of the Modified Effective Range Theory
(MERT) [23] in calculating the s-wave scattering length

reveals the presence of a virtual state around 0.9 eV when
the molecule is considered in its equilibrium geometry,
a feature connected with the existence of the RT min-
imum. It further suggests that molecular deformations
(bond stretching) cause the virtual state energy location
to move closer to the zero-energy line and therefore to
acquire the features of a resonance that, in keeping with
the experimental observation [22], can in turn cause a dra-
matic change in the energy dependence of the ICS at very
low collision energies.
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